Our Amazon Store is open, welcome to purchase from our store.
Post time: May-21-2022
We keep improving and perfecting our products and service. At the same time, we work actively to do research and development forMiller Air Cylinders, Pilot Solenoid Valve, single acting air cylinder, We also ensure that your selection will be crafted with the highest quality and reliability. Please feel free to contact us for further information. The product will supply to all over the world, such as, Canada, Pakistan, Indonesia, slovakia, Switzerland, Turkey, With high quality, reasonable price, on-time delivery and customized & customized services to help customers achieve their goals successfully, our company has got praise in both domestic and foreign markets. Buyers are welcome to contact us.
The design of pneumatic fittings should allow the free flow of required air or gas without any opportunity for significant drops in pressure. Pipes and hoses should be configured as simply as possible, so that no energy is lost in the air’s passage through the system. Always use straight runs wherever possible, and only use elbows and Ts if absolutely necessary.
When choosing your pneumatic fittings, there are some key environmental factors that must also be taken into account.
The operating temperature specified by the manufacturer defines the range of temperatures or the operational temperature ratings within which the particular fitting is designed to work. This is measured in degrees Celsius (°C) or degrees Fahrenheit (°F), and the fitting may well fail if it is made to operate above or below this specified range. It must be borne in mind that the ambient temperature of the inlet air to the compression unit will affect the compressed air output.
As air heats up or rises the pressure drops, so industrial automation equipment should generally only be used in a controlled temperature environment. In general terms, every 5º F of temperature reduction produces a 1% improvement in efficiency and power conservation, but both high ambient air temperature and low intake pressures will significantly affect performance. It’s also a fact that an increase in operating temperature will cause a reduction in the operating pressure of polyurethane and nylon tubing.
The most common air contaminants are water, oil and particulates, such as dirt, rust and metal shavings. Such contaminants in the air intake are commonly removed by the filtration system, usually comprising a filter-regulator-lubricator unit (FRL). The lubricant also acts as a coolant in some types of compressor, but there is sometimes a danger of the heated lubricant getting back into the inlet air and causing contamination there. Additional contaminants in the form of bacteria or microorganisms can also be critical in some types of application, such as pharmaceuticals or food.
It seems simple, but it is essential to ensure that there is sufficient space around the installation to allow the best configured construction, as well as access for maintenance and repairs. It should be large enough to allow pipework to run naturally, and to permit a free flow of ambient air so the space doesn’t overheat externally. The equipment also needs to be stable with no possibility of vibration.
Reed sensors have been in use for many years and are the most common type used in pneumatic cylinders. They're cost-effective and versatile, although typically slower and less resistant in extreme environments.
A reed switch is a simple form of magnetic proximity sensor, comprising a pair of ferromagnetic nickel and iron reeds mounted axially inside a hermetically sealed glass tube. When no magnetic field is present, the metal reeds remain separate, in the OFF position. As the cylinder-mounted magnet approaches, the sensor generates a magnetic field parallel to it, switching to the ON position when a strong enough magnetic field attracts the metal reeds together.
Reed sensors usually last for at least 10 million switching cycles, and they're inexpensive to acquire and install. They can function with either AC or DC electrical loads and require no standby power.
Conversely, they're comparatively slow, and may not work well with high-speed applications. As they're mechanical devices that contain moving parts, they will eventually fail after a finite number of switching cycles. Using them with high-current loads will also reduce their life expectancy. The main concern for reed switches is that they can be unstable in applications that deliver high shock and vibration frequency.
There are three types of electromagnetic sensor:
Anisotropic Magnetoresistive (AMR)
Giant Magnetoresistive (GMR)
Hall-Effect (HE)
These are solid-state devices that use semiconductors instead of mechanical parts. This makes them easier to mount, faster to react, longer-lasting and more resistant to vibration and shock.
Electromagnetic sensors work by transforming a measurable physical quantity into an electrical output signal. An HE sensor has a continuous electrical current flowing through a semiconductor. A radial magnetic field applied to the sensor causes the charged electrons within it to separate, and induce an output voltage across the HE circuit. The sensor is switched to the ON position when this voltage exceeds the switching threshold.
AMR and GMR sensors can apply a magnetic field either axially or radially, changing the electrical circuit's resistance properties to create a higher voltage gradient as the magnetic field increases.
These types of sensor are fast-acting, have no mechanical parts to wear out, and are much more resilient to shock and vibration. They're less sensitive than HE sensors and can detect weaker magnet fields, allowing better detection of piston movement over greater distances. AMR sensors are cost-competitive and more compact than reed switches, while GMR sensors are even more sensitive and can be even more compact. This makes them a good choice for smaller or shorter cylinders.
AMR sensors usually draw current continuously and are not so well suited to low-power applications. The high sensitivity of GMR sensors is beneficial for applications requiring immediate sensor feedback, but they may be disturbed by nearby magnetic fields of other machinery and thus cause unintended output signalling.
Reed sensors are still the most popular and will work for most common applications. Their technology has worked well over time, and their life cycle and vibration resistance have mostly been adequate. For more specialised applications, you'll need to take into account what environment your cylinder will be exposed to. Factors include the use of enclosed clean environments, extremes of temperature, and vibration and shocks.
For solid-state devices, you'll need to consider whether the output switching speed is critical to your application, and what output signal type your control system requires: PNP (positive) or NPN (negative).
The type of sensor you choose must have current requirements and switching power compatible with your control system. It must also incorporate any necessary circuit protections. You'll need to take mounting options into account according to your cylinder type, and magnet orientation to the piston if you choose a reed switch or HE sensor.
The final consideration is the power supply wiring to the sensor, as miswiring the sensor can permanently damage it. Solid-state (AMR, GMR, HE) sensors usually have a three-wire configuration; reed switches use two-wire.
Most people will go with a reed switch sensor for the usual run of machine applications, but more complex applications and automated systems may demand a more responsive solution. Considerations of space, power and responsiveness will all depend on its working environment, while cost-effectiveness is always a factor.
(From the internet)
Sensors are a means of providing feedback to a control system, so that the operating parameters of an application can be continually adjusted for optimal results. Pneumatic cylinder sensors can be used to measure various parameters. Their typical function in pneumatics is to detect the position of a pneumatic cylinder during its operation by means of proximity switches.
The phrase “pneumatic cylinder sensors” usually refers to position sensors, which are important in applications where the piston’s linear position is critical. Position feedback is provided by sensors mounted on the cylinder. It’s passed to the control system so that it can make necessary operational adjustments. Sensor proximity switches can be of an inductive mechanical type, but more common is a magnetic proximity switch and position transmitter connected to a control system.
The sensors deliver electrical signals via a transmitter, reporting the piston’s position to a control system. The feedback provided by position sensors offers an additional layer of security, ensuring that the piston is ideally placed to drive crucial applications.
Pneumatic cylinders also use other sensors, including those measuring airflow and pressure, but we’re focusing on position sensors. Of these, magnetic proximity sensors are probably the most common type. They’re mounted onto the cylinder body, where they can detect the magnetic field generated by the piston’s integral magnet. They indicate its proximity by relaying an ON or OFF signal to the control system.
The sensors can be mounted in various positions on the cylinder body to detect extension and retraction of the piston. They can also be mounted at one or more specific positions for more precise sensory input. The type of sensor you choose and the way they’re mounted will depend on whether you have a round or a rectangular (profile) cylinder body.
(from Internet)
Pneumatic fittings are required in any kind of pressurised gas system to link together sections of tubing, pipe or hose. They typically have tighter seals and are subject to lower pressure than hydraulic fittings, and are frequently found in pneumatic instrumentation and logic control systems, as well as moving parts such as cylinders.
Although fittings may represent the minutiae of the overall pneumatic system design, they are perhaps the most important of all the elements. Pneumatic fittings, together with their pipes, hoses and tubes, connect all the other major components together, and can therefore have a major influence on the efficiency, safety and energy consumption of the entire system.
Pneumatics are used in many of today’s industrial and automation environments, and there is an increasingly wide range of options from which to choose your components. Knowing how to choose pneumatic fittings is therefore all about suiting the materials to the job and its environment. In order to break down this process, you first need to identify:
the specific environment in which your equipment will be working
the required air pressure or PSI specification of your equipment
any approvals that may be needed for the equipment and its components
the material(s) from which your fittings should be made
the type and size of tubing you will require
the type and size of thread your fittings will need
Adequate sizing of compressors and feed lines is the first place to start to ensure proper system operation. Consistent plant air pressure with suitable flow allows pneumatic devices to operate as designed, as low or varying air pressure can negatively impact the final product and overall machine sequence. For example, a manufacturing plant was experiencing low air pressure in its facility at the end of the day shift, causing one of the machines to fault due to low air pressure in its pneumatic actuation system. The problem was found to be high-volume air consumers nearby, namely blow guns being used to clean machines at the end of each day. Insufficient capacity at the air compressor, or undersized plant air supply tubing and piping is a common issue and one to look out for. If air consumption is a major concern for your factory, check out our Interactive Air Consumption Calculator here.
Once consistent and correct pneumatic system air pressure and flow is established, plant supply air should be connected to a manual, lockable air dump valve at each use point. This lockout, tag-out capability is important for isolating a machine—or a module of a large machine—for changeover, maintenance or tooling changes. A filter regulator should also be installed at the air dump valve. The filter removes dust particles and water that can cause wear and operation problems for pneumatic system components. A regulator is required to throttle to the design air pressure at the use point, typically 60 to 90 psi, as the plant air supply is usually higher, about 100 to 130 psi. Operating at the design pressure as opposed to plant pressure will reduce wear on pneumatic components.
An electric soft start valve downstream of the regulator allows air pressure to gradually increase at start-up, preventing sudden banging or slamming of cylinders at power up. This is especially important if 4-way, 2-position valves are used because a 2-position valve spool maintains its position after power off and the removal of air. When power and air is reapplied, air will return to the cylinder. If all air was exhausted, no air is available on the other side of the cylinder. This makes speed control with flow controls non-functional. The uncontrolled speed of the cylinder could cause a high-speed stroke, commonly ending with a bang. When soft start valves are correctly applied, a machine will typically return to its home position slowly and smoothly at power up.
Lubricators should be used sparingly and only when necessary. Most modern pneumatic components come lubricated from the factory and do not need oil. However, pneumatic motors on air tools and other equipment do require a lubricator and one should be supplied in these instances.
Pneumatic cylinders are a popular way to clamp, position and transfer parts in automated equipment and although there are many types of cylinders, their construction is fairly similar from one to another. Take a moment and review the Pneumatic Cylinders article to get a basic understanding of what cylinders are and how they operate. Understanding the basics helps to know how different applications affect the cylinder and piston rod.
The load is the primary consideration when determining cylinder type and piston size. The piston area (force factor) multiplied by the air pressure in the cylinder gives the available force. A general rule is to select a force factor that will produce a force 25% greater than the load to help compensate for friction and losses. Pneumatic systems are quite forgiving in terms of oversizing, but using components that are too big adds unnecessary expenses in terms of both purchase price and energy consumption.
The bore size (force factor) determines force at a given pressure. The operating pressure, which in a plant can typically range from 10 to 150 psi, is the first consideration when selecting a bore size. The next step in choosing the bore size is the amount of force that the application requires. Suppliers often provide charts to assist with calculating bore size. If the bore diameter is between sizes, fluid-power experts recommend rounding up to the next size. It’s also important to remember the bore diameter squares the thrust delivered. For example, a two-inch diameter cylinder has four times the power of a one-inch diameter unit. Therefore, doubling the bore quadruples the thrust.
In addition to load, designers must also take into account the speed at which the load will move. When compressed air flows through a system, there are pressure losses due to friction against the tube wall, flow around bends, and restrictions in valves and fittings (to name a few issues). Higher speeds result in greater pressure loss as the air must flow faster through the valves, tubing and ports. Attaining higher speeds also requires that the cylinder deliver more force in a shorter amount of time. A force that exceeds the load by 50% or more may be required to reliably move a load at high speeds. For example, a typical air compressor might supply air to a system at 100 psi. In an application with a slow-moving load, the actual pressure available at the piston might be reduced to no less than 90 psi. With that same load moving at a much faster rate, the available pressure could drop as low as 70 psi.
Pressure losses can be remedied by increasing pressure, but this must be done with caution: Too much pressure creates stress on the cylinder and could possibly damage the cylinder, as well as the load. In these instances, it’s better to go with a larger cylinder. Also keep in mind that raising system pressure means the compressor must work harder, increasing energy consumption of the overall pneumatic system.
(From Internet)
Our Amazon Store is open, welcome to purchase from our store.